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Physique générale : quantique, Série 1

Assistants et tuteurs :
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sara.alvesdossantos@epfl.ch sofia.brizigotti@epfl.ch douaa.salah@epfl.ch
felice.bordereau@epfl.ch thomas.chetaille@epfl.ch arianna.vigano@epfl.ch

marco.dimambro@epfl.ch

Avec cette premiére série d’exercices vous pouvez tester vos connaissances en analyse et algébre
linéaire, ainsi que d’introduire la notion, trés importante en physique, d’analyse dimensionnelle. Si
vous constatez que la plupart des exercices vous sont obscurs, c’est le moment de nous faire signe
en contactant un des assistants ou des tuteurs. On vous donnera alors des conseils pour vous mettre
& niveau pour le cours.

Exercice 1 : Valeurs propres et vecteurs propres d’une matrice

Calculer (s'ils existent) les valeurs propres et les vecteurs propres de la matrice :
1
M= (2 1) |

Exercice 2 : La transformée de Fourier

Calculez et discutez (donc indiquez les extrema, les zéros et, si applicable, la largeur spectrale)
de la transformée de Fourier des fonctions f(¢) suivantes :

1.

0 sinon.

f(t):{ A —T/2<t<T/2

f(t):Ae_“‘”, —o<t<+4+o0, a>0

Dans les deux cas, A est une constante arbitraire.

Exercice 3 : L’equation d’onde

Considérer I'équation différentielle aux dérivées partielles
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— Montrer que la fonction f(x,t) = €'**=“*") est une solution de I’équation différentielle si on
choisit pour wy une fonction de k spécifique. Déterminer I'expression de wy, en fonction de k.

— La solution qu’on vient d’obtenir vaut pour tout k& € R. S’agissant d’une équation homogéne,
toute combinaison linéaire de différentes solutions est encore une solution. La solution générale
s’écrit donc N o

< A(k)
f(z,t) = dk ==L pilk—wrt)
(z,1) - o

Pour déterminer une solution spécifique, il faut poser les conditions initiales & t = 0. Supposer
que, at =20, on a
1 _a? R
2,0) = ————€ 22 o€
Calculer f(z,t).

On rappelle ici 'expression pour l'intégrale Gaussienne élémentaire
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et on remarque que, pour effectuer le calcul au dernier point, il pourrait falloir calculer des intégrales
Gaussiennes un peu plus compliquées, pour lesquelles on pourrait vouloir adopter des stratégies
basées sur une intégrale de contour sur le plan complexe (voir cours de Analyse III).

On rappelle également que la fonction “delta” de Dirac §(z) est un objet trés important en
analyse et en physique, et intervient dans la solution de ce probléme. Il s’agit d'une fonction
généralisée, ce qui veut dire qu'on ne peut faire des calculs avec que si utilisée dans 'argument
d’une intégrale. En particulier, on a la relation fj;o f(z)d(x — xg)dx = f(x¢) pour une fonction
f(z) arbitraire continue en x = . Dans la théorie des fonctions généralisées, la fonction delta
admet une transformée de Fourier. Plus spécifiquement, la relation suivante est vraie : 276(z — ) =

fOO ip(x—a) dp .
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Exercice 4 : Analyse dimensionnelle : la pendule
Considérer une pendule de longueur ! et masse m, soumise a 'accélération de gravité g. Les

propriétés physiques de la pendule vont étre des fonctions de ces trois quantité, car il n’y en a pas
d’autre qui caractérise le systéme.

Sans résoudre les équations du mouvement, mais seulement & 'aide de ’analyse dimensionnelle,
dire comment la période T' des oscillations de la pendule dépend de [, m et g.



Exercice 5 : Analyse dimensionnelle : les dimensions de la constante de Planck

En physique quantique, un état quantique d’énergie propre F est caractérisé par une phase qui
varie en fonction du temps selon ’expression

ot h = h/2m est la constante de Planck réduite. A 'aide de considérations d’analyse dimensionnelle
a partir de cette expression, dire quelles sont les dimensions physiques de & (exprimées en métres,
kg, et secondes)

Exercice 6 : Analyse dimensionnelle : Energie de I’explosion d'une bombe atomique

En juillet 1945 au New Mexico, USA, la premiére bombe nucléaire a été fait détoner en guise
de test des résultats du projet Manhattan. En 1947, des photos ultrarapides de ’explosion ont été
rendues publiques (voir figure). En 1950, le physicien anglais G. I. Taylor a publié une étude ou,
a l’aide de la seule analyse dimensionnelle, il a réussi a estimer I’énergie de 1’explosion, alors que
cette donnée était encore strictement classifiée.
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En utilisant les données visibles dans la photo, estimer 'énergie E de ’explosion. Pour cela il
faut savoir que les quantités physiques qui entrent en jeux sont le rayon r de I’explosion, le temps
t, I'énergie E, et la densité de lair qui entoure I'explosion. Cette derniére vaut p = 1.25 kg/m?>.
On rappelle que 'unité d’énergie dans le SI est le Joule qui vaut 1 kgxm?/s?, et que 1 Kilotonne
équivaut a 4.2 x 10'2 Joules.

Exercice 7 : Question de type d’examen

La loi de Wien Iw (A, T') = 27;#5026_}‘6/ (AkT) et une bonne approximation a des petites longueurs
d’onde A de la loi de Planck Ipjanec(A, 1) = (A pour le spectre du corps noir. A des

AS(ehc/(AkBT)_l)
grandes longueurs d’onde par contre elle ne décrit pas bien le spectre. Calculer l'erreur défini



comme le rapport Ippnck(A, T)/Iw (A, T) dans la limite de grandes longueurs d’onde. Le résultat
vaut

A

1 hec 1 kT he kT 1\ hc
.= B.—— C.A D.A\—— E. (1
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