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Avec cette première série d’exercices vous pouvez tester vos connaissances en analyse et algèbre
linéaire, ainsi que d’introduire la notion, très importante en physique, d’analyse dimensionnelle. Si
vous constatez que la plupart des exercices vous sont obscurs, c’est le moment de nous faire signe
en contactant un des assistants ou des tuteurs. On vous donnera alors des conseils pour vous mettre
à niveau pour le cours.

Exercice 1 : Valeurs propres et vecteurs propres d’une matrice

Calculer (s’ils existent) les valeurs propres et les vecteurs propres de la matrice :

M =

(
1 i
2 1

)
.

Exercice 2 : La transformée de Fourier

Calculez et discutez (donc indiquez les extrema, les zéros et, si applicable, la largeur spectrale)
de la transformée de Fourier des fonctions f(t) suivantes :

1.
f(t) =

{
A −T/2 ≤ t ≤ T/2
0 sinon.

2.
f(t) = Ae−a|t| , −∞ < t < +∞ , a > 0

Dans les deux cas, A est une constante arbitraire.

Exercice 3 : L’equation d’onde

Considérer l’équation différentielle aux dérivées partielles

−∂
2f(x, t)

∂x2
= i

∂f(x, t)

∂t
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— Montrer que la fonction f(x, t) = ei(kx−ωkt) est une solution de l’équation différentielle si on
choisit pour ωk une fonction de k spécifique. Déterminer l’expression de ωk en fonction de k.

— La solution qu’on vient d’obtenir vaut pour tout k ∈ R. S’agissant d’une équation homogène,
toute combinaison linéaire de différentes solutions est encore une solution. La solution générale
s’écrit donc

f(x, t) =

∫ +∞

−∞
dk

A(k)√
2π

ei(kx−ωkt) .

Pour déterminer une solution spécifique, il faut poser les conditions initiales à t = 0. Supposer
que, à t = 0, on a

f(x, 0) =
1

(2πσ2)1/4
e−

x2

4σ2 σ ∈ R

Calculer f(x, t).
On rappelle ici l’expression pour l’intégrale Gaussienne élémentaire∫ +∞

−∞
dx e−

x2

2σ2 =
√
2πσ2 ,

et on remarque que, pour effectuer le calcul au dernier point, il pourrait falloir calculer des intégrales
Gaussiennes un peu plus compliquées, pour lesquelles on pourrait vouloir adopter des stratégies
basées sur une intégrale de contour sur le plan complexe (voir cours de Analyse III).

On rappelle également que la fonction “delta” de Dirac δ(x) est un objet très important en
analyse et en physique, et intervient dans la solution de ce problème. Il s’agit d’une fonction
généralisée, ce qui veut dire qu’on ne peut faire des calculs avec que si utilisée dans l’argument
d’une intégrale. En particulier, on a la relation

∫ +∞
−∞ f(x)δ(x − x0)dx = f(x0) pour une fonction

f(x) arbitraire continue en x = x0. Dans la théorie des fonctions généralisées, la fonction delta
admet une transformée de Fourier. Plus spécifiquement, la relation suivante est vraie : 2πδ(x−α) =∫∞
−∞ e

ip(x−α) dp .

Exercice 4 : Analyse dimensionnelle : la pendule

Considérer une pendule de longueur l et masse m, soumise à l’accélération de gravité g. Les
propriétés physiques de la pendule vont être des fonctions de ces trois quantité, car il n’y en a pas
d’autre qui caractérise le système.

Sans résoudre les équations du mouvement, mais seulement à l’aide de l’analyse dimensionnelle,
dire comment la période T des oscillations de la pendule dépend de l, m et g.
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Exercice 5 : Analyse dimensionnelle : les dimensions de la constante de Planck

En physique quantique, un état quantique d’énergie propre E est caractérisé par une phase qui
varie en fonction du temps selon l’expression

ϕ(t) = e−i
Et
~

où ~ = h/2π est la constante de Planck réduite. A l’aide de considérations d’analyse dimensionnelle
à partir de cette expression, dire quelles sont les dimensions physiques de ~ (exprimées en mètres,
kg, et secondes)

Exercice 6 : Analyse dimensionnelle : Energie de l’explosion d’une bombe atomique

En juillet 1945 au New Mexico, USA, la première bombe nucléaire a été fait détoner en guise
de test des résultats du projet Manhattan. En 1947, des photos ultrarapides de l’explosion ont été
rendues publiques (voir figure). En 1950, le physicien anglais G. I. Taylor a publié une étude où,
à l’aide de la seule analyse dimensionnelle, il a réussi à estimer l’énergie de l’explosion, alors que
cette donnée était encore strictement classifiée.

En utilisant les données visibles dans la photo, estimer l’énergie E de l’explosion. Pour cela il
faut savoir que les quantités physiques qui entrent en jeux sont le rayon r de l’explosion, le temps
t, l’énergie E, et la densité de l’air qui entoure l’explosion. Cette dernière vaut ρ = 1.25 kg/m3.
On rappelle que l’unité d’énergie dans le SI est le Joule qui vaut 1 kg×m2/s2, et que 1 Kilotonne
équivaut à 4.2× 1012 Joules.

Exercice 7 : Question de type d’examen

La loi de Wien IW(λ, T ) = 2πhc2

λ5
e−hc/(λkBT ) est une bonne approximation à des petites longueurs

d’onde λ de la loi de Planck IPlanck(λ, T ) = 2πhc2

λ5(ehc/(λkBT )−1) pour le spectre du corps noir. A des
grandes longueurs d’onde par contre elle ne décrit pas bien le spectre. Calculer l’erreur défini
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comme le rapport IPlanck(λ, T )/IW(λ, T ) dans la limite de grandes longueurs d’onde. Le résultat
vaut

A.
1

λ

hc

kBT
B.

1

λ

kBT

hc
C. λ

hc

kBT
D. λ

kBT

hc
E.

(
1− 1

λ

)
hc

kBT
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